F-polynomials in Quantum Cluster Algebras
نویسنده
چکیده
F -polynomials and g-vectors were defined by Fomin and Zelevinsky to give a formula which expresses cluster variables in a cluster algebra in terms of the initial cluster data. A quantum cluster algebra is a certain noncommutative deformation of a cluster algebra. In this paper, we define and prove the existence of analogous quantum F -polynomials for quantum cluster algebras. We prove some properties of quantum F -polynomials. In particular, we give a recurrence relation which can be used to compute them. Finally, we compute quantum F -polynomials and g-vectors for a certain class of cluster variables, which includes all cluster variables in type An quantum cluster algebras.
منابع مشابه
Acyclic Quantum Cluster Algebras
This thesis concerns quantum cluster algebras. For skew-symmetric acyclic quantum cluster algebras, we express the quantum F -polynomials and the quantum cluster monomials in terms of Serre polynomials of quiver Grassmannians of rigid modules. Then we introduce a new family of graded quiver varieties together with a new t-deformation, and generalize Nakajima’s t-analogue of q-characters to thes...
متن کاملQuivers with Potentials and Their Representations Ii: Applications to Cluster Algebras
We continue the study of quivers with potentials and their representations initiated in the first paper of the series. Here we develop some applications of this theory to cluster algebras. As shown in the “Cluster algebras IV” paper, the cluster algebra structure is to a large extent controlled by a family of integer vectors called g-vectors, and a family of integer polynomials called F -polyno...
متن کاملM ar 2 01 0 QUIVERS WITH POTENTIALS AND THEIR REPRESENTATIONS II : APPLICATIONS TO CLUSTER ALGEBRAS
We continue the study of quivers with potentials and their representations initiated in the first paper of the series. Here we develop some applications of this theory to cluster algebras. As shown in the “Cluster algebras IV” paper, the cluster algebra structure is to a large extent controlled by a family of integer vectors called g-vectors, and a family of integer polynomials called F -polyno...
متن کاملOn Cluster Algebras Arising from Unpunctured Surfaces Ii
We study cluster algebras with principal and arbitrary coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of certain paths on a triangulation of the surface. As an immediate consequence, we prove the positivity conjecture of Fomin and Zelevinsky for these cluster a...
متن کاملUnfolding of Acyclic Sign-skew-symmetric Cluster Algebras and Applications to Positivity and F -polynomials
In this paper, we build the unfolding approach from acyclic sign-skew-symmetric matrices of finite rank to skew-symmetric matrices of infinite rank, which can be regard as an improvement of that in the skew-symmetrizable case. Using this approach, we give a positive answer to the problem by Berenstein, Fomin and Zelevinsky in [6] which asks whether an acyclic signskew-symmetric matrix is always...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009